Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
JMIR Mhealth Uhealth ; 9(9): e31621, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1443996

ABSTRACT

BACKGROUND: Mobile health (mHealth) may improve pediatric weight management capacity and the geographical reach of services, and overcome barriers to attending physical appointments using ubiquitous devices such as smartphones and tablets. This field remains an emerging research area with some evidence of its effectiveness; however, there is a scarcity of literature describing economic evaluations of mHealth interventions. OBJECTIVE: We aimed to assess the economic viability of using an mHealth approach as an alternative to standard multidisciplinary care by evaluating the direct costs incurred within treatment arms during a noninferiority randomized controlled trial (RCT). METHODS: A digitally delivered (via a smartphone app) maintenance phase of a pediatric weight management program was developed iteratively with patients and families using evidence-based approaches. We undertook a microcosting exercise and budget impact analysis to assess the costs of delivery from the perspective of the publicly funded health care system. Resource use was analyzed alongside the RCT, and we estimated the costs associated with the staff time and resources for service delivery per participant. RESULTS: In total, 109 adolescents participated in the trial, and 84 participants completed the trial (25 withdrew from the trial). We estimated the mean direct cost per adolescent attending usual care at €142 (SD 23.7), whereas the cost per adolescent in the mHealth group was €722 (SD 221.1), with variations depending on the number of weeks of treatment completion. The conversion rate for the reference year 2013 was $1=€0.7525. The costs incurred for those who withdrew from the study ranged from €35 to €681, depending on the point of dropout and study arm. The main driver of the costs in the mHealth arm was the need for health professional monitoring and support for patients on a weekly basis. The budget impact for offering the mHealth intervention to all newly referred patients in a 1-year period was estimated at €59,046 using the assessed approach. CONCLUSIONS: This mHealth approach was substantially more expensive than usual care, although modifications to the intervention may offer opportunities to reduce the mHealth costs. The need for monitoring and support from health care professionals (HCPs) was not eliminated using this delivery model. Further research is needed to explore the cost-effectiveness and economic impact on families and from a wider societal perspective. TRIAL REGISTRATION: ClinicalTrials.gov NCT01804855; https://clinicaltrials.gov/ct2/show/NCT01804855.


Subject(s)
Nutrition Therapy , Telemedicine , Adolescent , Child , Cost-Benefit Analysis , Exercise , Humans , Smartphone
3.
Front Pediatr ; 9: 630365, 2021.
Article in English | MEDLINE | ID: covidwho-1170107

ABSTRACT

Background: COVID-19 has brought to the fore an urgent need for secure information and communication technology (ICT) supported healthcare delivery, as the pertinence of infection control and social distancing continues. Telemedicine for paediatric care warrants special consideration around logistics, consent and assent, child welfare and communication that may differ to adult services. There is no systematic evidence synthesis available that outlines the implementation issues for incorporating telemedicine to paediatric services generally, or how users perceive these issues. Methods: We conducted a rapid mixed-methods evidence synthesis to identify barriers, facilitators, and documented stakeholder experiences of implementing paediatric telemedicine, to inform the pandemic response. A systematic search was undertaken by a research librarian in MEDLINE for relevant studies. All identified records were blind double-screened by two reviewers. Implementation-related data were extracted, and studies quality appraised using the Mixed-Methods Appraisal Tool. Qualitative findings were analysed thematically and then mapped to the Consolidated Framework for Implementation Research. Quantitative findings about barriers and facilitators for implementation were narratively synthesised. Results: We identified 27 eligible studies (19 quantitative; 5 mixed-methods, 3 qualitative). Important challenges highlighted from the perspective of the healthcare providers included issues with ICT proficiency, lack of confidence in the quality/reliability of the technology, connectivity issues, concerns around legal issues, increased administrative burden and/or fear of inability to conduct thorough examinations with reliance on subjective descriptions. Facilitators included clear dissemination of the aims of ICT services, involvement of staff throughout planning and implementation, sufficient training, and cultivation of telemedicine champions. Families often expressed preference for in-person visits but those who had tried tele-consultations, lived far from clinics, or perceived increased convenience with technology considered telemedicine more favourably. Concerns from parents included the responsibility of describing their child's condition in the absence of an in-person examination. Discussion: Healthcare providers and families who have experienced tele-consultations generally report high satisfaction and usability for such services. The use of ICT to facilitate paediatric healthcare consultations is feasible for certain clinical encounters and can work well with appropriate planning and quality facilities in place.

SELECTION OF CITATIONS
SEARCH DETAIL